Predictive Analytics Training Courses

Predictive Analytics Training

Predictive Analytics courses

Client Testimonials

Applied Machine Learning

ref material to use later was very good.

PAUL BEALES- Seagate Technology.

Applied Machine Learning

What did you like the most about the training?:

Gave me good practice with using R to build machine learning systems for real situations. I can use this in my work straight away.

This was an excellent course. One of the best I have had.

Matthew Thomas - British Telecom

Applied Machine Learning

ref material to use later was very good

PAUL BEALES - Seagate Technology

Predictive Analytics Course Outlines

Code Name Duration Overview
d2dbdpa From Data to Decision with Big Data and Predictive Analytics 21 hours Audience If you try to make sense out of the data you have access to or want to analyse unstructured data available on the net (like Twitter, Linked in, etc...) this course is for you. It is mostly aimed at decision makers and people who need to choose what data is worth collecting and what is worth analyzing. It is not aimed at people configuring the solution, those people will benefit from the big picture though. Delivery Mode During the course delegates will be presented with working examples of mostly open source technologies. Short lectures will be followed by presentation and simple exercises by the participants Content and Software used All software used is updated each time the course is run so we check the newest versions possible. It covers the process from obtaining, formatting, processing and analysing the data, to explain how to automate decision making process with machine learning. Quick Overview Data Sources Minding Data Recommender systems Target Marketing Datatypes Structured vs unstructured Static vs streamed Attitudinal, behavioural and demographic data Data-driven vs user-driven analytics data validity Volume, velocity and variety of data Models Building models Statistical Models Machine learning Data Classification Clustering kGroups, k-means, nearest neighbours Ant colonies, birds flocking Predictive Models Decision trees Support vector machine Naive Bayes classification Neural networks Markov Model Regression Ensemble methods ROI Benefit/Cost ratio Cost of software Cost of development Potential benefits Building Models Data Preparation (MapReduce) Data cleansing Choosing methods Developing model Testing Model Model evaluation Model deployment and integration Overview of Open Source and commercial software Selection of R-project package Python libraries Hadoop and Mahout Selected Apache projects related to Big Data and Analytics Selected commercial solution Integration with existing software and data sources
apachemdev Apache Mahout for Developers 14 hours Audience Developers involved in projects that use machine learning with Apache Mahout. Format Hands on introduction to machine learning. The course is delivered in a lab format based on real world practical use cases. Implementing Recommendation Systems with Mahout Introduction to recommender systems Representing recommender data Making recommendation Optimizing recommendation Clustering Basics of clustering Data representation Clustering algorithms Clustering quality improvements Optimizing clustering implementation Application of clustering in real world Classification Basics of classification Classifier training Classifier quality improvements
bigdatar Programming with Big Data in R 21 hours Introduction to Programming Big Data with R (bpdR) Setting up your environment to use pbdR Scope and tools available in pbdR Packages commonly used with Big Data alongside pbdR Message Passing Interface (MPI) Using pbdR MPI 5 Parallel processing Point-to-point communication Send Matrices Summing Matrices Collective communication Summing Matrices with Reduce Scatter / Gather Other MPI communications Distributed Matrices Creating a distributed diagonal matrix SVD of a distributed matrix Building a distributed matrix in parallel Statistics Applications Monte Carlo Integration Reading Datasets Reading on all processes Broadcasting from one process Reading partitioned data Distributed Regression Distributed Bootstrap
appliedml Applied Machine Learning 14 hours This training course is for people that would like to apply Machine Learning in practical applications. Audience This course is for data scientists and statisticians that have some familiarity with statistics and know how to program R (or Python or other chosen language). The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization. The purpose is to give practical applications to Machine Learning to participants interested in applying the methods at work. Sector specific examples are used to make the training relevant to the audience. Naive Bayes Multinomial models Bayesian categorical data analysis Discriminant analysis Linear regression Logistic regression GLM EM Algorithm Mixed Models Additive Models Classification KNN Bayesian Graphical Models Factor Analysis (FA) Principal Component Analysis (PCA) Independent Component Analysis (ICA) Support Vector Machines (SVM) for regression and classification Boosting Ensemble models Neural networks Hidden Markov Models (HMM) Space State Models Clustering
Piwik Getting started with Piwik 21 hours Web analysist Data analysists Market researchers Marketing and sales professionals System administrators Format of course 30% lectures 60% exercises 10% tests Introduction to Piwik Why use Piwik? Piwik vs Google Analystics Setting up Piwik Selecting which websites to monitor Working with the dashboard Understanding visitor activity Actions Referrals Generating reports  
datamodeling Pattern Recognition 35 hours This course provides an introduction into the field of pattern recognition and machine learning. It also touches on practical applications in statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. The course is interactive and includes plenty of hands-on exercises, continuous feedback, and testing of knowledge and skills acquired. Audience     Data analysts     PhD students, researchers and practitioners   Introduction Probability theory, model selection, decision and information theory Probability distributions Linear models for regression and classification Neural networks Kernel methods Sparse kernel machines Graphical models Mixture models and EM Approximate inference Sampling methods Continuous latent variables Sequential data Combining models  
kdd Knowledge Discover in Databases (KDD) 21 hours Knowledge discovery in databases (KDD) is the process of discovering useful knowledge from a collection of data. Real-life applications for this data mining technique include marketing, fraud detection, telecommunication and manufacturing. In this course, we introduce the processes involved in KDD and carry out a series of exercises to practice the implementation of those processes. Audience     Data analysts or anyone interested in learning how to interpret data to solve problems Format of the course     After a theoretical discussion of KDD, the instructor will present real-life cases which call for the application of KDD to solve a problem. Participants will prepare, select and cleanse sample data sets and use their prior knowledge about the data to propose solutions based on the results of their observations. Introduction     KDD vs data mining Establishing the application domain Establishing relevant prior knowledge Understanding the goal of the investigation Creating a target data set Data cleaning and preprocessing Data reduction and projection Choosing the data mining task Choosing the data mining algorithms Interpreting the mined patterns

Upcoming Courses

CourseCourse DateCourse Price [Remote / Classroom]
Apache Mahout for Developers - New York (NYC) - Midtown Manhattan - Park Avenue & E48-49th (Grand Central)Mon, Apr 10 2017, 9:30 am$5500 / $8300
From Data to Decision with Big Data and Predictive Analytics - NE, Omaha – Linden PlaceMon, Apr 10 2017, 9:30 am$5000 / $7390

Other regions

Weekend Predictive Analytics courses, Evening Predictive Analytics training, Predictive Analytics boot camp, Predictive Analytics instructor-led , Predictive Analytics on-site, Evening Predictive Analytics courses, Predictive Analytics one on one training , Predictive Analytics training courses,Weekend Predictive Analytics training, Predictive Analytics instructor, Predictive Analytics coaching, Predictive Analytics classes, Predictive Analytics private courses

Course Discounts

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

Some of our clients