Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
Course Outline
Installation
- Docker
- Ubuntu
- RHEL / CentOS / Fedora installation
- Windows
Caffe Overview
- Nets, Layers, and Blobs: the anatomy of a Caffe model.
- Forward / Backward: the essential computations of layered compositional models.
- Loss: the task to be learned is defined by the loss.
- Solver: the solver coordinates model optimization.
- Layer Catalog: the layer is the fundamental unit of modeling and computation – Caffe’s catalogue includes layers for state-of-the-art models.
- Interfaces: command line, Python, and MATLAB Caffe.
- Data: how to caffeinate data for model input.
- Caffeinated Convolution: how Caffe computes convolutions.
New models and new code
- Detection with Fast R-CNN
- Sequences with LSTMs and Vision + Language with LRCN
- Pixelwise prediction with FCNs
- Framework design and future
Examples:
- MNIST
21 Hours
Testimonials (1)
I genuinely enjoyed the hands-on approach.