Course Outline


  • Apache MXNet vs PyTorch

Deep Learning Principles and the Deep Learning Ecosystem

  • Tensors, Multi-layer Perceptron, Convolutional Neural Networks, and Recurrent Neural Networks
  • Computer Vision vs Natural Language Processing

Overview of Apache MXNet Features and Architecture

  • Apache MXNet Compenents
  • Gluon API interface
  • Overview of GPUs and model parallelism
  • Symbolic and imperative programming


  • Choosing a Deployment Environment (On-Premise, Public Cloud, etc.)
  • Installing Apache MXNet

Working with Data

  • Reading in Data
  • Validating Data
  • Manipulating Data

Developing a Deep Learning Model

  • Creating a Model
  • Training a Model
  • Optimizing the Model

Deploying the Model

  • Predicting with a Pre-trained Model
  • Integrating the Model into an Application

MXNet Security Best Practices


Summary and Conclusion


  • An understanding of machine learning principles
  • Python programming experience


  • Data scientists
 21 Hours

Number of participants

Price per participant

Testimonials (5)

Related Courses

Artificial Neural Networks, Machine Learning, Deep Thinking

21 Hours

Introduction to Deep Learning

21 Hours

Advanced Deep Learning

28 Hours

Deep Learning for Vision with Caffe

21 Hours

Deep Learning for Vision

21 Hours

Artificial Intelligence (AI) in Automotive

14 Hours

Machine Learning and Deep Learning

21 Hours

OpenNN: Implementing Neural Networks

14 Hours

OpenNMT: Setting Up a Neural Machine Translation System

7 Hours

Introduction Deep Learning & Réseaux de neurones pour l’ingénieur

21 Hours


21 Hours

OpenFace: Creating Facial Recognition Systems

14 Hours

Advanced Machine Learning with Python

21 Hours

Advanced Machine Learning with R

21 Hours

Matlab for Deep Learning

14 Hours

Related Categories