Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
Course Outline
I. Introduction and preliminaries
1. Overview
- Making R more friendly, R and available GUIs
- Rstudio
- Related software and documentation
- R and statistics
- Using R interactively
- An introductory session
- Getting help with functions and features
- R commands, case sensitivity, etc.
- Recall and correction of previous commands
- Executing commands from or diverting output to a file
- Data permanency and removing objects
- Good programming practice: Self-contained scripts, good readability e.g. structured scripts, documentation, markdown
- installing packages; CRAN and Bioconductor
2. Reading data
- Txt files (read.delim)
- CSV files
3. Simple manipulations; numbers and vectors + arrays
- Vectors and assignment
- Vector arithmetic
- Generating regular sequences
- Logical vectors
- Missing values
- Character vectors
- Index vectors; selecting and modifying subsets of a data set
- Arrays
- Array indexing. Subsections of an array
- Index matrices
- The array() function + simple operations on arrays e.g. multiplication, transposition
- Other types of objects
4. Lists and data frames
- Lists
- Constructing and modifying lists
- Concatenating lists
- Data frames
- Making data frames
- Working with data frames
- Attaching arbitrary lists
- Managing the search path
5. Data manipulation
- Selecting, subsetting observations and variables
- Filtering, grouping
- Recoding, transformations
- Aggregation, combining data sets
- Forming partitioned matrices, cbind() and rbind()
- The concatenation function, (), with arrays
- Character manipulation, stringr package
- short intro into grep and regexpr
6. More on Reading data
- XLS, XLSX files
- readr and readxl packages
- SPSS, SAS, Stata,… and other formats data
- Exporting data to txt, csv and other formats
6. Grouping, loops and conditional execution
- Grouped expressions
- Control statements
- Conditional execution: if statements
- Repetitive execution: for loops, repeat and while
- intro into apply, lapply, sapply, tapply
7. Functions
- Creating functions
- Optional arguments and default values
- Variable number of arguments
- Scope and its consequences
8. Simple graphics in R
- Creating a Graph
- Density Plots
- Dot Plots
- Bar Plots
- Line Charts
- Pie Charts
- Boxplots
- Scatter Plots
- Combining Plots
II. Statistical analysis in R
1. Probability distributions
- R as a set of statistical tables
- Examining the distribution of a set of data
2. Testing of Hypotheses
- Tests about a Population Mean
- Likelihood Ratio Test
- One- and two-sample tests
- Chi-Square Goodness-of-Fit Test
- Kolmogorov-Smirnov One-Sample Statistic
- Wilcoxon Signed-Rank Test
- Two-Sample Test
- Wilcoxon Rank Sum Test
- Mann-Whitney Test
- Kolmogorov-Smirnov Test
3. Multiple Testing of Hypotheses
- Type I Error and FDR
- ROC curves and AUC
- Multiple Testing Procedures (BH, Bonferroni etc.)
4. Linear regression models
- Generic functions for extracting model information
- Updating fitted models
- Generalized linear models
- Families
- The glm() function
- Classification
- Logistic Regression
- Linear Discriminant Analysis
- Unsupervised learning
- Principal Components Analysis
- Clustering Methods(k-means, hierarchical clustering, k-medoids)
5. Survival analysis (survival package)
- Survival objects in r
- Kaplan-Meier estimate, log-rank test, parametric regression
- Confidence bands
- Censored (interval censored) data analysis
- Cox PH models, constant covariates
- Cox PH models, time-dependent covariates
- Simulation: Model comparison (Comparing regression models)
6. Analysis of Variance
- One-Way ANOVA
- Two-Way Classification of ANOVA
- MANOVA
III. Worked problems in bioinformatics
- Short introduction to limma package
- Microarray data analysis workflow
- Data download from GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1397
- Data processing (QC, normalisation, differential expression)
- Volcano plot
- Custering examples + heatmaps
28 Hours
Testimonials (5)
how the trainor shows his knowledge in the subject he's teachign
john ernesto ii fernandez - Philippine AXA Life Insurance Corporation
Course - Data Vault: Building a Scalable Data Warehouse
The pace was just right and the relaxed atmosphere made candidates feel at ease to ask questions.
Rhian Hughes - Public Health Wales NHS Trust
Course - Introduction to Data Visualization with Tidyverse and R
Richard's training style kept it interesting, the real world examples used helped to drive the concepts home.
Jamie Martin-Royle - NBrown Group
Course - From Data to Decision with Big Data and Predictive Analytics
I thought that the information was interesting.
Allison May
Course - Data Visualization
I like the exercises done.