Course Outline
Introduction
- Chainer vs Caffe vs Torch
- Overview of Chainer features and components
Getting Started
- Understanding the trainer structure
- Installing Chainer, CuPy, and NumPy
- Defining functions on variables
Training Neural Networks in Chainer
- Constructing a computational graph
- Running MNIST dataset examples
- Updating parameters using an optimizer
- Processing images to evaluate results
Working with GPUs in Chainer
- Implementing recurrent neural networks
- Using multiple GPUs for parallelization
Implementing Other Neural Network Models
- Defining RNN models and running examples
- Generating images with Deep Convolutional GAN
- Running Reinforcement Learning examples
Troubleshooting
Summary and Conclusion
Requirements
- An understanding of artificial neural networks
- Familiarity with deep learning frameworks (Caffe, Torch, etc.)
- Python programming experience
Audience
- AI Researchers
- Developers
Testimonials (3)
Hunter is fabulous, very engaging, extremely knowledgeable and personable. Very well done.
Rick Johnson - Laramie County Community College
Course - Artificial Intelligence (AI) Overview
The trainer was a professional in the subject field and related theory with application excellently
Fahad Malalla - Tatweer Petroleum
Course - Applied AI from Scratch in Python
It was very interactive and more relaxed and informal than expected. We covered lots of topics in the time and the trainer was always receptive to talking more in detail or more generally about the topics and how they were related. I feel the training has given me the tools to continue learning as opposed to it being a one off session where learning stops once you've finished which is very important given the scale and complexity of the topic.