Pattern Recognition Training Courses

Pattern Recognition Training

Pattern recognition is a branch of machine learning that focuses on the recognition of patterns and regularities in data.

Pattern Recognition Course Outlines

Code Name Duration Overview
patternmatching Pattern Matching 14 hours Pattern Matching is a technique used to locate specified patterns within an image. It can be used to determine the existence of specified characteristics within a captured image, for example the expected label on a defective product in a factory line or the specified dimensions of a component. It is different from "Pattern Recognition" (which recognizes general patterns based on larger collections of related samples) in that it specifically dictates what we are looking for, then tells us whether the expected pattern exists or not. Audience     Engineers and developers seeking to develop machine vision applications     Manufacturing engineers, technicians and managers Format of the course     This course introduces the approaches, technologies and algorithms used in the field of pattern matching as it applies to Machine Vision. Introduction     Computer Vision     Machine Vision     Pattern Matching vs Pattern Recognition Alignment     Features of the target object     Points of reference on the object     Determining position     Determining orientation Gauging     Setting tolerance levels     Measuring lengths, diameters, angles, and other dimensions     Rejecting a component Inspection     Detecting flaws     Adjusting the system Closing remarks  
datamodeling Pattern Recognition 35 hours This course provides an introduction into the field of pattern recognition and machine learning. It also touches on practical applications in statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. The course is interactive and includes plenty of hands-on exercises, continuous feedback, and testing of knowledge and skills acquired. Audience     Data analysts     PhD students, researchers and practitioners   Introduction Probability theory, model selection, decision and information theory Probability distributions Linear models for regression and classification Neural networks Kernel methods Sparse kernel machines Graphical models Mixture models and EM Approximate inference Sampling methods Continuous latent variables Sequential data Combining models  

Other regions

Weekend Pattern Recognition courses, Evening Pattern Recognition training, Pattern Recognition boot camp, Pattern Recognition instructor-led , Weekend Pattern Recognition training, Pattern Recognition trainer , Pattern Recognition instructor, Pattern Recognition classes, Pattern Recognition coaching, Evening Pattern Recognition courses, Pattern Recognition training courses, Pattern Recognition one on one training , Pattern Recognition private courses

Course Discounts

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

Some of our clients