Course Outline
Day 1
Introduction and preliminaries
- Making R more friendly, R and available GUIs
- Rstudio
- Related software and documentation
- R and statistics
- Using R interactively
- An introductory session
- Getting help with functions and features
- R commands, case sensitivity, etc.
- Recall and correction of previous commands
- Executing commands from or diverting output to a file
- Data permanency and removing objects
Simple manipulations; numbers and vectors
- Vectors and assignment
- Vector arithmetic
- Generating regular sequences
- Logical vectors
- Missing values
- Character vectors
- Index vectors; selecting and modifying subsets of a data set
- Other types of objects
Objects, their modes and attributes
- Intrinsic attributes: mode and length
- Changing the length of an object
- Getting and setting attributes
- The class of an object
Ordered and unordered factors
- A specific example
- The function tapply() and ragged arrays
- Ordered factors
Arrays and matrices
- Arrays
- Array indexing. Subsections of an array
- Index matrices
- The array() function
- Mixed vector and array arithmetic. The recycling rule
- The outer product of two arrays
- Generalized transpose of an array
- Matrix facilities
- Matrix multiplication
- Linear equations and inversion
- Eigenvalues and eigenvectors
- Singular value decomposition and determinants
- Least squares fitting and the QR decomposition
- Forming partitioned matrices, cbind() and rbind()
- The concatenation function, (), with arrays
- Frequency tables from factors
Day 2
Lists and data frames
- Lists
- Constructing and modifying lists
- Concatenating lists
- Data frames
- Making data frames
- attach() and detach()
- Working with data frames
- Attaching arbitrary lists
- Managing the search path
Data manipulation
- Selecting, subsetting observations and variables
- Filtering, grouping
- Recoding, transformations
- Aggregation, combining data sets
- Character manipulation, stringr package
Reading data
- Txt files
- CSV files
- XLS, XLSX files
- SPSS, SAS, Stata,… and other formats data
- Exporting data to txt, csv and other formats
- Accessing data from databases using SQL language
Probability distributions
- R as a set of statistical tables
- Examining the distribution of a set of data
- One- and two-sample tests
Grouping, loops and conditional execution
- Grouped expressions
- Control statements
- Conditional execution: if statements
- Repetitive execution: for loops, repeat and while
Day 3
Writing your own functions
- Simple examples
- Defining new binary operators
- Named arguments and defaults
- The '...' argument
- Assignments within functions
- More advanced examples
- Efficiency factors in block designs
- Dropping all names in a printed array
- Recursive numerical integration
- Scope
- Customizing the environment
- Classes, generic functions and object orientation
Statistical analysis in R
- Linear regression models
- Generic functions for extracting model information
- Updating fitted models
- Generalized linear models
- Families
- The glm() function
- Classification
- Logistic Regression
- Linear Discriminant Analysis
- Unsupervised learning
- Principal Components Analysis
- Clustering Methods (k-means, hierarchical clustering, k-medoids)
- Survival analysis
- Survival objects in r
- Kaplan-Meier estimate
- Confidence bands
- Cox PH models, constant covariates
- Cox PH models, time-dependent covariates
Graphical procedures
- High-level plotting commands
- The plot() function
- Displaying multivariate data
- Display graphics
- Arguments to high-level plotting functions
- Basic visualisation graphs
- Multivariate relations with lattice and ggplot package
- Using graphics parameters
- Graphics parameters list
Automated and interactive reporting
- Combining output from R with text
Creating html, pdf documents
Testimonials (7)
At the end of the class, we had a great overview of the language, we were provided tools to continue learning and were provided suggestions on how to continue learning. We covered AI/ML information.
Victor Prado - Global Knowledge Network Training Ltd
Course - R
The R-programming overview training is quite intensive but Tomasz is always helpful, energetic and up to date. On top of it, he is passionate about R. I would highly recommend his R sessions to anyone interested in R.
Luiza Panoschi - Global Knowledge Network Training Ltd
Course - R
Que el instructor dominaba muy bien el tema
Norma Cortes - SERVICIOS CORPORATIVOS SCOTIA SA DE CV
Course - R
La utilidad de la herramienta
Victor Manuel Ortega Munguia - SERVICIOS CORPORATIVOS SCOTIA SA DE CV
Course - R
Los conocimientos de Jorge, su experiencia y la forma de poder transmitir ambos. Muchas gracias Jorge.
Ivan Martínez Rivera - SERVICIOS CORPORATIVOS SCOTIA SA DE CV
Course - R
Practice exercises were relevant and very helpful to reinforce the knowledge.
Andy Kwan - Environment and Climate Change Canada
Course - R
Follow-along exercises after slide presentation kept engagement.